Friday,
2011-10-28
10:00-11:00
|
Raum 404, Eckerstr. 1
Christian Liedtke:
Serre-Tate lifts for Calabi-Yau varieties
For an ordinary Abelian variety over a perfect field of
positive characteristic, Serre and Tate discovered a
canonical lift over the Witt ring. Later, this has been
generalized to varieties with trivial tangent bundles by
Nori and Srinivas. In this talk, we will construct a
canonical lift for ordinary varieties with trivial
canonical sheaves, which generalizes Serre-Tate as well as
Nori-Srinivas. As applications, we obtain a Serre-Tate
theory for Calabi-Yau varieties (as anticipated by
Stienstra), as well as a Bogomolov-Tian-Todorov
unobstructedness theorem for such varieties (building on
work of Ekedahl and Shepherd-Barron). We also discuss
examples due to Hirokado, Schroeer, Schoen, Cynk and van
Straten of non-liftable Calabi-Yau varieties for which
unobstructedness of deformations fails. |
Friday,
2011-11-04
10:00-11:00
|
Raum 404, Eckerstr. 1
Jonas Wangenheim:
Universelle Konstruktionen von Nori-Motive |
Friday,
2011-11-25
10:00-11:00
|
Raum 404, Eckerstr. 1
Patrick Graf:
Compact moduli spaces of surfaces via MMP |
Friday,
2011-12-02
10:00-11:00
|
Raum 404, Eckerstr. 1
Joseph Ayoub:
Relative version of the Kontsevich-Zagier conjecture on periods.
We formulate and prove a relative version of the K-Z conjecture on periods. In this relative version, numbers (and rational numbers) will be replaced by Laurent series (and rational functions). |
Friday,
2011-12-09
10:00-11:00
|
Raum 404, Eckerstr. 1
Alex Küronya:
Negative curves on algebraic surfaces
It has been a long-standing folklore conjecture going back to Enriques, that on a smooth projective surface over the complex numbers the self-intersection of curves has a lower bound.
In a joint work with Bauer, Harbourne, Knutsen, Müller-Stach, and Szemberg, we disprove the conjecture with the help of certain Hilbert modular surfaces. |
Friday,
2011-12-16
10:00
|
Raum 404, Eckerstr. 1
Daniel Greb:
Vorstellungsvortrag |
Friday,
2012-01-20
10:00
|
Raum 404, Eckerstr. 1
Emanuel Scheidegger:
Pencils of cubic fourfolds
We will discuss some Hodge-theoretic aspects of families of cubic fourfolds. Our focus will lie on so-called special cubic fourfolds, which contain an algebraic surface not homologous to a plane. We will show that there is a modular form that counts the special members of a pencil of cubic fourfolds. If time permits, we will go on with some speculations on the derived category of special cubic fourfolds and homological mirror symmetry. |
Friday,
2012-02-10
10:00-11:00
|
Raum 404, Eckerstr. 1
Alexander Rahm (NUI Galway):
Invarianten arithmetischer Gruppen |
Friday,
2012-02-17
10:00-11:00
|
Raum 404, Eckerstr. 1
Wolfgang Soergel:
Koszul-Dualität
Was ist Koszul-Dualität und warum ist sie wichtig
für die Darstellungstheorie. |
Tuesday,
2012-03-27
10:15-11:00
|
Raum 404, Eckerstr. 1
Julius Zwirner:
Komplexe Multiplikation auf elliptischen Kurven
Elliptische Kurven haben sogenannte komplexe Multiplikation, wenn ihr Endomorphismenring nicht nur aus den ueblichen n-Multplikationsabbildungen besteht. Ziel meines Vortrags ist es, einige der grundlegende Eigenschaften sowie den Hauptsatz elliptischer Kurven mit komplexer Multiplikation zu beschreiben, der es ermoeglicht, die Klassenkoerpertheorie eines quadratisch imaginaeren Zahlenkoerpers explizit mit Hilfe der j-Invariante und den Torsionspunkten einer solchen Kurve zu beschreiben. Sofern es die Zeit erlaubt, wuerde ich anschliessend wenigstens auf einige Aspekte des Beweises eingehen und einen Ausblick geben, wie sich die Theorie fuer den Fall abelscher Varietaeten verallgemeinern laesst. |